# **Benchmark study of the EAF plants** using KT injection system (Case of long products - carbon steel production)

## F. Memoli, V. K. Koester, C. Giavani

In the last five years the amount of oxygen used into the Electric Arc Furnace has increased a lot. This fact depends, especially in areas like Western Europe, on the high cost of the electrical energy, but in general this increase can also be explained with the development of new injection technologies, which have increased the efficiency on the thermal and chemical input into the EAF.

In addition to that, the multipoint injection of supersonic oxygen and powder carbon around the EAF, has also given the possibility to automate the melting and refining operations, so that nowadays the furnace operator can perform only supervision activities to the melting and refining process. No risk of human errors, for instance over-oxidation with manual operated lances, is anymore present. One of these

injection technologies, KT Injection System, a product of Techint Technologies, has performed a very big development during the last two years, with more than twenty projects started up worldwide.

In this paper it is presented the benchmark study of the performances, which have been achieved in the plants where KT Injection System has been installed.

Comparisons between the situation before and after the installation, on all the major parameters of the EAF, give interesting information on injection efficiencies and furnace sustainable productivity increases.

Keywords: steel, decarbonization, steelmaking, technology

#### **INTRODUCTION TO THIS BENCHMARK STUDY**

This benchmark is the updating the first study issued one year ago, which was considering a number of 40 Electric Arc Furnaces placed in 9 different areas of the world. The number of plants now considered has raised up to 66 in the same areas, giving even more consistency to the result of the research.

Benchmarking Electric Arc Furnaces it's a difficult task, taking into account the big number of variables that can effect EAF operation. One approach to accomplish this kind of study is the standardization of some parameters, to be able to finalize a comparison

In this study, the purpose is to compare EAF plants producing mainly carbon steel (rebar and in general not high quality steel) and then comparing the result with similar plants that have introduced the KT Injection System - the multipoint chemical package of Techint Technologies.

All plant data used in this second benchmark study has been collected during 2003 and 2004, so the study refers to the present situation of those plants.

It is not the intention of this paper to get to general conclusions regarding average energy consumption or average productivity for a typical Electric Arc Furnace.

It's commonly agreed that in the Steel Industry, and in particular in the EAF field, it's difficult to determine the best energy consumption or productivity, due to the big quantity of direct factors (scrap type, furnace design, manpower, etc) and indirect factors (plant efficiency, market conditions for scrap and billets, etc) influencing the liquid steel production. Apart for this general considerations, this benchmark can be

> F. Memoli, V. K. Koester, C. Giavani Techint Technologies, Milano (Italy)

Paper presented at the 2<sup>nd</sup> New Developments in Metallurgical Process Technology

useful to overview the different operational figures in many plants, an opportunity that is not always frequent and can be useful to make simple comparisons.

The name and the location of the plants object of this benchmark are not disclosed, due to obvious confidential reasons.

**BENCHMARK OF EAFs PRODUCING CARBON STEEL** FOR LONG PRODUCTS: GEOGRAPHIC DISTRIBUTION

The EAF considered in this second benchmark are 66, located in 9 different geographical areas and producing as average about 500,000 metric tons per year. Total production considered is about 30 million of tons. The majority of these plants are producing carbon steel with no special quality requirement and all of them are in the Long Products market. In Table 1 it is indicated the location of the plants considered in the old benchmark of 2003 and in this new Benchmark 2004:

| PLANTS                                                                                                                            | Benchm. 2003                                                                                  | Benchm. 2004                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Europe<br>United States<br>Brazil<br>China<br>South East Asia<br>Central America<br>South Africa<br>Japan<br>Middle East<br>TOTAL | 14 (35%)<br>10 (25%)<br>4 (10%)<br>3 (7,5%)<br>2 (5%)<br>2 (5%)<br>1 (2,5%)<br>1 (2,5%)<br>40 | 30 (45,5%)<br>12 (18,2%)<br>5 (7,6%)<br>5 (7,6%)<br>4 (6,1%)<br>3 (4,5%)<br>3 (4,5%)<br>3 (4,5%)<br>1 (1,5%)<br>66 |
| Table 1                                                                                                                           |                                                                                               | Tabella 1                                                                                                          |

Table 1

There is no particular reason for this distribution but the availability of consistent statistics about the Electric Arc Furnaces. This geographic distribution is not reflecting the

| AREA                           | %  |
|--------------------------------|----|
| Europe (UE and others)         | 22 |
| North America (USA and Canada) | 11 |
| Central America and Mexico     | 2  |
| South America                  | 4  |
| C.I.S. (Russia and others)     | 11 |
| Africa                         | 2  |
| Middle East                    | 1  |
| China                          | 25 |
| Japan                          | 11 |
| Other Asia                     | 10 |
| Oceania                        | 1  |

Table 2

Tabella 2



*Fig. 1 – KT Oxygen Lance, a product of Techint. Fig. 1 – Un prodotto di Techint: la lancia ossigeno.* 

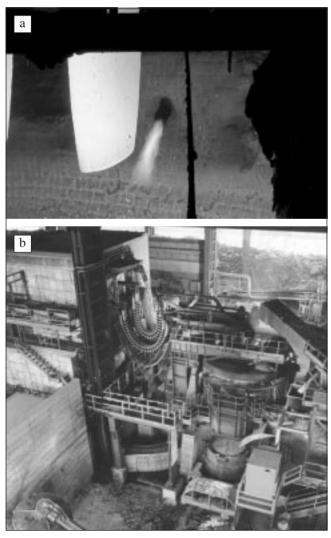



Fig. 2 - a) Typical locations of KT Lance; b) view of a Techint Technology EAF in operation.

Fig. 2 - a) Posizione tipica della lancia KT; b) vista di un forno Techint in funzione.

carbon steel production in the World (see table 2), nor the global steel production in the World, as a matter of fact China represents only the 7.5% of this study and a big market like C.S.I. is not included in this benchmark due to the fact that it was not available consistent data to include. Since the European and North America together represent in this benchmark the 63.7% of the data considered, we can consider this benchmark focused on these two areas with some influence coming from the rest of the world.

Just for reference we include here (table 2) the world steel production in percentage (Source Worldsteel.org, last updated 18 Jun 2004).

#### **ELECTRIC ARC FURNACE STATISTICS**

In Table 3 the data considered for the benchmark are summarized, as it is not possible to release all the single records. The figures, per each steel plant, have been selected as Monthly Averages of consecutive months of 2003 and/or 2004, at least one complete month of data.

Therefore these data can be considered representative of each one of the forty plants studied.

For each of the itemized figures, we have indicated the minimum value registered, the maximum value registered, the average value and the standard deviation of the forty plants, just to give a summary indication of the group of plants considered.

We reproduce also the table of Benchmark referred to 2003 (Table 3), the previous study to this one, to permit a sort of comparison between the two different studies.

A first remark is referred to the difference between the two benchmarks indicated; in the study of 2004 the "typical" furnace has a slightly reduced size (85 instead of 87 metric tons), a better yield (.87 instead of .86), a lower Tap to Tap time of about one minute and a lower electrical energy consumption (427 instead of 433 kWh/ton).

For what concerns the Standard Deviation, it is important to remark that their high value are the clear evidence that there is not uniformity of performances for this kind of production of steel worldwide.

The average consumption figures above are representing a yearly production of about thirty million of metric tons of liquid steel. For instance, the electrical energy consumption is 427 kWh/metric tons.

Even if there are plants in this group consuming only around 300 kWh/t, the global average is much higher: so it is true that the trend is to go below 400 kWh/t, but at the present time this target has not been reached yet for the majority of the plants.

The same consideration can be done for the electrode consumption: this value is decreasing in Europe and sometimes in the United States below 2 kg/t, thanks to the improvements of foamy slag practice and the electrode quality, but even in other countries - with no first-quality suppliers consumption figures are decreasing thanks to the introduction of a foamy slag practice. Anyhow, even if there are some plants consuming 0,9 or 1,0 kg/t in AC furnaces, there are still plants that have electrode consumptions over 3 kg/t, a value certainly high which probably depends on the age of the equipment used in such furnaces.

A different consideration must be done regarding the tapping temperature: in this group of plants considered, there are plants which can count on a LF for steel treatment before casting, and there are plants which have no LF, so they have to tap at high temperatures to prevent low temperatures during casting. As a matter of fact, even if a LF is very common equipment nowadays, there are still plants that are working without that, maintaining anyhow good production performances.

-12/2005

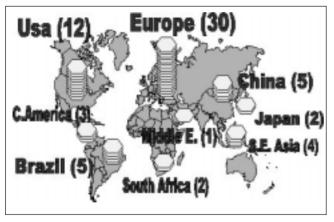
H

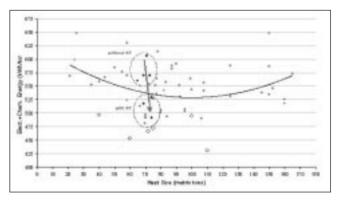
## SIDERURGIA

| BENCHMARK 2003                                                                                                                                                                                                                                                                     | Unit<br>Int.                                                                                                                                       | *<br>US     | Ave<br>Int.                                                   | rage<br>US   | Stdev                                                                                  | Minir<br>Int.                                                                            | num<br>US                                       | Maxin<br>Int.                                                                          | mum<br>US                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------|
| Total Charge<br>Heat size<br>Yield<br>Power On Time<br>Power Off Time<br>Tap to Tap Time<br>Average Active Power<br>El. Energy consumption<br>O <sub>2</sub> consumption<br>CH <sub>4</sub> consumption<br>Carbon consumption tot<br>FeO in slag content<br>Electrodes consumption | metric ton<br>metric ton<br>%<br>Minut<br>Minut<br>Minut<br>MW<br>kWh/ton<br>Nm <sup>3</sup> /ton<br>Nm <sup>3</sup> /ton<br>kg/ton<br>%<br>kg/ton | es<br>es    | 2<br>7<br>4<br>433<br>32<br>5<br>13                           | 2<br>0<br>2  | 41%<br>40%<br>4%<br>41%<br>53%<br>40%<br>41%<br>15%<br>29%<br>72%<br>44%<br>25%<br>21% | 24.2<br>21.3<br>0.7<br>30<br>6.<br>43<br>12<br>318<br>18.0<br>0.0<br>4.0<br>28<br>1.0    | .0<br>0<br>.0<br>.3<br>288<br>416<br>0.0<br>8.0 | 196.5<br>160.0<br>0.9<br>164<br>201<br>95<br>525<br>50.0<br>13.0<br>31.0<br>46<br>3.1  | 0.0<br>5.0<br>5.8<br>475<br>1601<br>416.5<br>62.0 |
| BENCHMARK 2003                                                                                                                                                                                                                                                                     | Unit<br>Int.                                                                                                                                       | *<br>US     | Ave<br>Int.                                                   | rage<br>US   | Stdev                                                                                  | Minir<br>Int.                                                                            | num<br>US                                       | Maxi<br>Int.                                                                           | mum<br>US                                         |
| Tapping Temperature<br>Total Charge<br>Heat size<br>Yield<br>Power On Time<br>Power Off Time<br>Tap to Tap Time<br>Average Active Power<br>El. Energy consumption<br>O <sub>2</sub> consumption<br>CH <sub>4</sub> consumption<br>Carbon consumption tot<br>FeO in slag content    | °C<br>metric ton<br>metric ton<br>Minut<br>Minut<br>Minut<br>MW<br>kWh/ton<br>Nm <sup>3</sup> /ton<br>Nm <sup>3</sup> /ton                         | es<br>es    | 1640<br>98<br>85<br>2<br>7<br>4<br>427<br>32<br>4<br>13<br>34 | <br>0<br>    | 2%<br>42%<br>41%<br>5%<br>39%<br>76%<br>44%<br>48%<br>15%<br>28%<br>86%<br>42%<br>25%  | 1600<br>24.2<br>21.3<br>0.7<br>30<br>6.<br>43<br>12<br>298.0<br>13.0<br>0.0<br>2.5<br>28 | .0<br>0<br>.0<br>.3<br>270<br>416<br>0.0<br>5.0 | 1720<br>196.5<br>160.0<br>0.9<br>164<br>20:<br>95<br>575<br>50.0<br>13.0<br>31.0<br>46 | 0.0<br>5.0<br>5.8<br>517<br>1601<br>416.5<br>62.0 |
| Electrodes consumption<br>Tapping Temperature                                                                                                                                                                                                                                      | kg/ton<br>°C                                                                                                                                       | Lb/st<br>°F | 1.92<br>1637                                                  | 3.84<br>2978 | 45%<br>2%                                                                              | 0,9<br>1600.0                                                                            | 1.8<br>2912                                     | 3.2<br>1720                                                                            | 6.4<br>3128                                       |

\* Heat size and specific consumptions are referred to metric or short tons of tapped liquid steel

Table 3





Fig. 3 – Geographical distribution of this Benchmark study 2004. Fig. 3 – Distribuzione geografica di questo studio comparativo del 2004.

#### **BENCHMARK OF THE EAFs**

To be in condition to compare data, all of them have been reparameterized to the same tapping temperature: 1640°C, which is the average tapping temperature of all the plants (on the basis of 0,4 kWh/°C). Then, two parameters have been considered: the Total Energy Consumption and the Specific Productivity.

Total Energy Consumption (kWh/t) is the sum of Electrical Energy consumption and Thermo-Chemical Energy consumption. To calculate the second factor, standard efficiencies have been given to Natural Gas (9,6 kWh/Nm<sup>3</sup>) and Oxygen (3,2 kWh/Nm<sup>3</sup>).

Tabella 3



*Fig. 4 – Total Energy Consumption Vs Heat size, the jump of some plants after KT Installation, Consteel® plants in blanks.* 

Fig. 4 – Consumi totali di energia rispetto al taglio di colata, il miglioramento di alcuni impianti dopo l'installazione delle lance KT; impianti Consteel® rappresentati con pallini bianchi.

• Specific Productivity is the furnace net productivity – tons of liquid steel produced in the power-on time – divided per the total Furnace Power (electrical and chemical power, considering the same rates as before). Specific Productivity gives the indication of tons produced per hour per MW installed.

These two parameters constitute the y-axes of the following two graphs, where on the x-axe there is the Heat Size. Points in gray are the results of the calculation per each one of the plants, while points in dark-blue are the EAFs KT Injection System and matching the requirements for this benchmark, pointed out before and after the KT Installation. In addition to that we have included also (indicated with circles in the

ហ

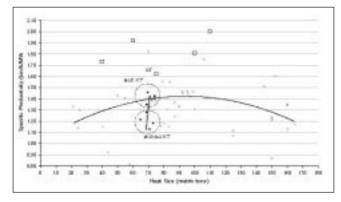



Fig. 5 – Specific Productivity Vs Heat size, the jump of some plants after KT Installation, Consteel® plants in blanks.

Fig. 5 – Produttività specifica rispetto alla taglia di colata, il salto di alcuni impianti dopo l'installazione delle lance KT; impianti Consteel® rappresentati con pallini bianchi.



Fig. 6 – Location plants.

Fig. 6 – Localizzazione degli impianti.

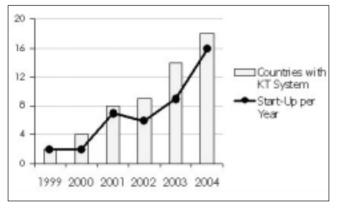



Fig. 7 – Growth of the KT Injection System Technology. Fig. 7 – Crescita della tecnologia del sistema di iniezione KT.

graphs) the data relevant to the Consteel<sup>®</sup> Plants matching the requirements for this benchmark.

The result of the re-parameterisation and the following calculation indicates that:

- Average Total Energy consumption is 542.7 kWh/metric ton. Anyway in the graph we have indicated a trend line, which presents a minimum value around 100 tons and 527 kWh/t.
- Average Specific Productivity is 1.319 metric tons/hour/MW. Anyway in the graph we have indicated a trend line, which presents a maximum value around 95 tons and 1.430 tons/hour/MW
- If an EAF is above the Average Curve of Total Energy

Consumption, introducing KT can jump below that curve, down of about 75 kWh per metric ton of liquid steel.

• If an EAF is below the Average Curve of Specific Productivity, introducing KT it can jump over that curve, at least of 0,25 metric tons per hour per MW installed.

## **KT INJECTION SYSTEM REFERENCES**

KT Injection System it is used for Oxygen injection, Carbon injection, Lime injection, DRI Fines injection, Dust injection, powder White-Slag injection. In Table 4 it is reported the scope of work of each one of the projects of KT Injection System.

## **KT INJECTION SYSTEM: GROWTH AND EXPANSION**

In Figure 7 it is shown the fast growth of the KT Injection System Technology – number of Project Start-Ups per Year - and the expansion Worldwide of this technology, testified by the number of Countries where Steel Plants are using the KT technology.

## **BIBLIOGRAPHY**

- Simulation of Oxygen penetration and decarburization in EAF using supersonic injection system, ISIJ International - The Iron and Steel Institute of Japan (Aug, 2004)
- Recycling of Ladle Furnace Slag and Spent Refractories by injection into EAF, Iron & Steel Technology (06-04)
- Numerical Simulation of a Supersonic Oxygen Lance for Industrial Applications in EAF, Scanmet II, 2nd International Conference on Process Development in Iron & Steelmaking, Luleå, Sweden (June 6th, 2004)
- 4) Aplicação na Planta da Gerdau Divinópolis de novas tecnologias para melhora de injeção de oxigênio e otimização do consumo de refratário: um teste para a indústria siderúrgica brasileira, XXXV ABM Steelmaking Seminar, Salvador - BA - Brazil (May 19-04)
- 5) DC EAF with high DRI feeding rates trough multipoint injection, MPT International 2/2004.
- Benchmark Study of the EAF Plants Using KT Injection System (Case of Long Products Carbon Steel), 2003 Iron and Steel Exposition and AISE Annual Convention, Pittsburgh, PA-USA (Sep.28–Oct.1, 2003)
- 7) High DRI Feeding Rate for an EAF-DC using a Multipoint Oxygen and Carbon Injection, 14th Steelmaking Seminar & 4th ISS Argentina Section Meeting, Buenos Aires (Oct.13 2003).
- Aumento della produttività in acciaieria con l'introduzione di tecnologie in-novative elettriche e chimiche, 29°Convegno Nazionale AIM (14/11/2002)
- 9) New Electrical and Chemical Technologies Implemented in the Dalmine Steel Plant, MPT International (Oct-02)
- 10) Increase of Productivity in Dalmine Steel Plant through the application of innovative electrical and chemical technologies, 7th European Electric Steel-making Conference (EEC), Venice, (May.26-29 2002)
- Operational Improvements Achieved in Davsteel (division of Cape Gate Pty. Ltd., South Africa) utilizing the New Techint KT Injection System and TDR Digital Regulation: a Case Study, Electric Furnace Conference (EFC), Phoenix, AZ (Nov.11-14 2001)
- Aplicaciones y resultados de la tecnología 'KT Injection System' en los hornos de arco eléctrico, 13th Steelmaking Seminar & 3rd ISS Argentina Section Meeting,

2005

T

Tabella 4

Buenos Aires (Oct.29-Nov.1 2001)

- 13) The advanced 'KT Injection System' for electrical arc furnace with high productivity, AISE 2001 Iron & Steel Exposition and Annual Convention (Sep. 23-26 2001, Cleveland)
- 14) La solución para incrementar la productividad de un EAF: nueva regulación digital integrada con un sistema de inyección oxígeno/carbón avanzado, VII Congreso

Metalúrgico Cubano, La Habana (Jul. 16-19, 2001)

- 15) KT Injection System: state of the art and results achieved in the new applications, Current Electric Arc Furnace Injection Technology, AIM Seminar (Jul. 4, 2001, Milan)
- 16) KT Injection System: the key for chemical energy in high performance Electric Arc Furnace, Millennium Steel 2001.

### Table 4

25

Dec 2003

TAMSA, Veracruz

Mexico

**T** 1 10

ы

|    | START UP                 | PLANT                                                 | COUNTRY       | EAFTYPE                               | KT SYSTEM                                                                   |
|----|--------------------------|-------------------------------------------------------|---------------|---------------------------------------|-----------------------------------------------------------------------------|
| 44 | Feb 2005<br>(under work) | SIDOR<br>(Long Products),<br>P.to Ordaz               | Venezuela     | EAF N.I, 150 ton<br>80% DRI           | 2 KT DRI Fines and Lime fines Injection                                     |
| 43 | Feb 2005<br>(under work) | STEFANA,<br>Ospitaletto (BS)                          | Italy         | EAF AC, 130 ton<br>100% scrap         | Complete Powder Injection Plant: 2 KT LF-Slag<br>Injectors and K-Slag Plant |
| 42 | Dec 2004<br>(under work) | TIANJIN PIPE<br>CORPORATION -<br>TPCO, Tianjin        | China         | EAF AC#2, 150 ton<br>50% DRI          | Complete system: 4 KT Oxy, 2 KT Carbon, TDR-H                               |
| 41 | Nov 2004<br>(under work) | WHEELING PITT.<br>Pittsburgh PA                       | United States | EAF AC, 225 ton<br>Consteel+Hot M.    | Complete system: 5 KT Oxygen Lances, 4 KT<br>Carbon Injectors, TDR-H        |
| 40 | Oct 2004<br>(under work) | SIDOR<br>(Flat Products),<br>Puerto Ordaz             | Venezuela     | EAF N.2, 180 ton<br>80% DRI           | Complete system: 3 KT Oxygen Lances, 2 KT<br>Carbon Injectors               |
| 39 | Sep 2004<br>(under work) | HENG LI,<br>Ningxia Province                          | China         | EAF AC, 75 ton<br>Consteel system     | Complete system: 3 KT Oxygen Lances, 3 KT<br>Carbon Injectors, TDR-H        |
| 38 | Sep 2004<br>(under work) | MSC,<br>Mobarakeh Steel<br>Complex                    | Iran          | EAF N.8, 182 ton<br>100% DRI          | Complete system: 3 KT Oxygen Lances, 3 KT<br>Carbon Injectors, TDR-H        |
| 37 | Sep 2004<br>(under work) | ACCIAIERIE<br>DI SICILIA,<br>Catania                  | Italy         | EAF AC, 70 ton<br>100% scrap          | Complete system: 3 KT Oxygen Lances, 3 KT<br>Carbon Injectors               |
| 36 | Aug 2004<br>(under work) | ACCIAIERIE<br>VENETE,<br>Padova                       | Italy         | EAF AC, 85 ton<br>100% scrap          | Complete system: 3 KT Oxygen Lances, 3 KT<br>Burner/Carbon Injectors        |
| 35 | Aug 2004<br>(under work) | ÄTORE STEEL,<br>Ätore                                 | Slovenia      | EAF AC, 50 ton<br>100% scrap          | Complete system: 3 KT Oxygen Lances, 3 KT<br>Carbon Injectors, TDR-H        |
| 34 | Aug 2004<br>(under work) | CISCO,<br>Cape Town                                   | South Africa  | EAF AC, 45 ton<br>100% scrap          | Complete system: 2 KT Oxygen Lances, 2 KT<br>Carbon Injectors, TDR-H        |
| 33 | Aug 2004<br>(under work) | PERWAJA STEEL<br>SDN BHD,<br>Kemaman                  | Malaysia      | DC - EAF N.5,<br>75 ton, 90% DRI      | Complete system: 4 KT Oxygen Lances, 2 KT<br>Carbon Injectors               |
| 32 | Jul 2004<br>(under work) | GERDAU<br>DIVINOPOLIS,<br>Divinopolis                 | Brasil        | EOF, 40 ton<br>65% Hot Metal          | KT Cooling Blocks installation                                              |
| 31 | 2004<br>(under work)     | WEI CHIH,<br>Kaohsiung                                | Taiwan R.O.C. | EAF AC, 100 ton<br>Consteel system    | Complete system: 3 KT Oxygen Lances, 3 KT<br>Carbon Injectors, TDR-H        |
| 30 | 2004<br>(under work)     | KOUZESTAN<br>STEEL Corp.<br>KSC,Ahwaz                 | Iran          | EAF AC 185 ton,<br>80% DRI            | Complete system, 3 KT Oxygen Lances, 3 KT<br>Carbon Injectors               |
| 29 | Apr 2004                 | WUXI XUEFENG<br>IRON & STEEL<br>CO. LTD.,Wuxi         | China         | EAF AC, 75 ton<br>Consteel system     | Complete system: 3 KT Oxygen Lances, 3 KT<br>Carbon Injectors, TDR-H        |
| 28 | Mar 2004                 | GERDAU<br>COSIGUA,<br>Rio de Janeiro                  | Brazil        | EAF AC, 100 ton<br>100% scrap         | Furnace improvement I KT Oxygen Lance, I KT<br>Carbon Injector              |
| 27 | Jan 2004                 | SIDERURGICA<br>SEVILLANA S.A.,<br>Riva Group, Sevilla | Spain         | EAF AC, 90 ton<br>100% scrap          | Furnace improvement: I KT Oxygen Lance + 2 KT<br>Carbon Injectors           |
| 26 | Dec 2003                 | CHIMET, Arezzo                                        | Italy         | SAF (Cu-Ar-Au),<br>3 ton, 100% powder | 2 KT Oxygen Lances KT Cooling blocks                                        |
|    |                          |                                                       |               |                                       |                                                                             |

EAF AC, 150 ton

20% DRI

11-12/2005

 $\rightarrow$ 

## SIDERURGIA

|    | START UP | PLANT                                                         | COUNTRY       | EAFTYPE                            | KT SYSTEM                                                                      |
|----|----------|---------------------------------------------------------------|---------------|------------------------------------|--------------------------------------------------------------------------------|
| 24 | Dec 2003 | OJI, Gunma - Tokio                                            | Japan         | EAF AC, 80 ton<br>100% scrap       | Complete system: 4 KT Oxygen Lances,2 KT<br>Burner/Car.Injectors               |
| 23 | Sep 2003 | PROFILATI<br>NAVE S.p.A.,<br>Montirone (BS)                   | Italy         | EAF AC, 70 ton<br>100% scrap       | System improvement: 4 KT Oxygen Lances, 2 KT<br>Carbon Injectors, TDR-H        |
| 22 | Aug 2003 | PERWAJA STEEL<br>SDN BHD,<br>Kemaman                          | Malaysia      | AC - EAF N.2,<br>75 ton, 90% DRI   | Complete system: 2 KT Oxygen Lances, 2 KT<br>Carbon Injectors                  |
| 21 | Aug 2003 | DAVSTEEL, division<br>of Cape Gate Pty<br>Ltd,Vanderbijlpark  | South Africa  | EAF AC, 75 ton<br>I 5% DRI         | System improvement: 4 KT Oxygen Lances, 3 KT<br>Carbon Injectors, TDR-H        |
| 20 | Jul 2003 | MARIENH(TTE,<br>Graz                                          | Austria       | EAF AC, 45 ton<br>100% scrap       | Complete system: 3 KT Oxygen Lances, 3 KT<br>Carbon Injectors                  |
| 19 | Jun 2003 | SIDOR<br>(Long Products),<br>Puerto Ordaz                     | Venezuela     | EAF N.I, I50 ton<br>80% DRI        | Complete system: 3 KT Oxygen Lances, 1 KT<br>Carbon Injector                   |
| 18 | Mar 2003 | GERDAU<br>AMERISTEEL,<br>Knoxville                            | United States | EAF AC, 55 ton<br>Consteel system  | Furnace improvement: I KT Carbon Injector                                      |
| 17 | Dec 2002 | PERWAJA STEEL<br>SDN BHD,<br>Kemaman                          | Malaysia      | DC - EAF N.4,<br>75 ton, 90% DRI   | Complete system: 4 KT Oxygen Lances, 2 KT<br>Carbon Injectors                  |
| 16 | Dec 2002 | FERRIERE NORD<br>S.p.A, Osoppo, UD                            | Italy         | EAF AC, 100 ton<br>100% scrap      | System Improvement: 2 KT LF-Slag Injectors, TDR-H                              |
| 15 | Sep 2002 | IRO Industrie<br>Riunite Odolesi SpA,<br>Odolo (Brescia)      | Italy         | EAF AC, 70 ton<br>100% scrap       | System improvement: 4 KT Oxygen Lances, 2 KT<br>Carbon Injectors               |
| 14 | Aug 2002 | RIVA<br>ACCIAIO S.p.A.,<br>Verona                             | Italy         | EAF AC N.2,<br>76 ton 100% scrap   | Furnace improvement: 3 KT Burn/C/CaO,TDR-H                                     |
| 13 | Aug 2002 | RIVA<br>ACCIAIO S.p.A.,<br>Verona                             | Italy         | EAFAC N.I,<br>76 ton 100% scrap    | Furnace improvement: 3 KT Burn/C/CaO,TDR-H                                     |
| 12 | Jan 2002 | EWK -<br>EDELSTHAL<br>Witten - Krefeld<br>GmbH                | Germany       | EAF AC, 130 ton<br>Stainless Steel | Complete system: 2 KT Oxygen Lances, 2 KT<br>Carbon Injectors                  |
| 11 | Aug 2001 | TENARIS<br>DALMINE, Dalmine<br>(Bergamo)                      | Italy         | EAF AC, 97 ton<br>100% scrap       | Complete system: 2 KT Oxygen Lances, 2 KT<br>Carbon Injectors, TDR-H           |
| 10 | Aug 2001 | MAKSTIL A.D<br>Duferco Group,<br>Skopie                       | Macedonia     | EAF AC, 110 ton<br>100% scrap      | Complete system: 3 KT Oxygen Lances, 3 KT<br>Carbon Injectors                  |
| 9  | Jun 2001 | SIDERURGICA<br>SEVILLANA S.A<br>Riva Group, Sevilla           | Spain         | EAF AC, 90 ton<br>100% scrap       | Furnace improvement: 2 KT Carbon Injectors                                     |
| 8  | May 2001 | TIANJIN PIPE<br>CORPORATION -<br>TPCO, Tianjin                | China         | EAF AC#1,<br>150 ton 50% DRI       | Complete System: 3 KT Oxy Lances, 2 KT Carbon<br>Injectors, 1 KT DRI-Fines Inj |
| 7  | Mar 2001 | FERRIERE NORD<br>S.p.A, Osoppo, UD                            | Italy         | EAF AC, 100 ton<br>100% scrap      | Furnace Improvement: 2 KT Lime Injectors                                       |
| 6  | Jan 2001 | DAVSTEEL, division<br>of Cape Gate Pty<br>Ltd, Vanderbijlpark | South Africa  | EAF AC, 75 ton<br>15% DRI          | Complete system: 3 KT Oxygen Lances, 3 KT<br>Carbon Injectors, TDR-H           |
| 5  | Jan 2001 | IRO Industrie Riunite<br>Odolesi SpA,<br>Odolo (BS)           | Italy         | EAF AC, 70 ton<br>100% scrap       | Complete System: 2 KT Oxygen Lances, 2 KT<br>Carbon Injectors                  |
| 4  | Dec 2000 | GEORGE FISCHER,<br>Mettmann,<br>(Düsseldorf)                  | Germany       | Cupola Furnace<br>Capacity 70t/h   | New development: KT Spout Cooling Element                                      |
| 3  | Oct 2000 | PROFILATI NAVE<br>S.p.A., Montirone<br>(BS)                   | Italy         | EAF AC, 70 ton<br>100% scrap       | Complete System: 2 KT Oxygen Lances, 2 KT<br>Carbon Injectors                  |
| 2  | Aug 1999 | SIDENOR STEEL<br>Co. SA, Thessalloniki                        | Greece        | EAF AC, 75 ton<br>100% scrap       | Furnace improvement: I KT Carbon Injector                                      |
|    | Sep 1999 | M.M.Z.                                                        | Moldova       | EAF AC, 120 ton                    | Furnace improvement: I KT Carbon Injector                                      |

11-12/2005

## ABSTRACT

#### STUDIO COMPARATIVO DELLE PERFORMANCES NEGLI IMPIANTI CHE UTILIZZANO IL SISTEMA DI INIEZIONE KT

#### Parole chiave: acciaio, decarburazione, acciaieria, tecnologie

Negli ultimi cinque anni la quantità di ossigeno usata nell'EAF è cresciuta notevolmente.

Questo situazione dipende, specialmente in aree come l'Europa Occidentale, dagli alti costi dell'energia elettrica, ma in generale questo incremento può anche essere spiegato con lo sviluppo di nuove tecnologie di iniezione che hanno aumentato l'efficienza termica e chimica nell'EAF.

In aggiunta a ciò, l'iniezione di ossigeno e carbone nell'EAF ha dato la possibilità di automatizzare la colata e affinare le operazioni, così da permettere all'operatore del forno di eseguire solamente le attività di supervisione alla colata e all'affinazione.

Non esiste più nessun rischio di errore umano, per esempio sovra-ossidazioni causate dall'uso improprio delle lance manuali.

Una di queste tecnologie di iniezione, KT INJECTION SY-STEM, un prodotto di Techint Technologies, ha effettuato un vero sviluppo durante gli ultimi due anni con più di 20 impianti operanti in tutto il mondo.

In questo paper presentiamo lo studio comparativo sulle performances che sono state raggiunte sugli impianti dove sono state installate le lance KT.

I paragoni tra la situazione prima e dopo l'installazione, su tutti i maggiori parametri dell'EAF, danno interessanti informazioni sull'efficienza dell'iniezione e sugli aumenti di produttività ottenuti dal forno.